Ray RLlib: A Framework for Distributed Reinforcement Learning

نویسندگان

  • Eric Liang
  • Richard Liaw
  • Robert Nishihara
  • Philipp Moritz
  • Roy Fox
  • Joseph Gonzalez
  • Ken Goldberg
  • Ion Stoica
چکیده

Reinforcement learning (RL) algorithms involve the deep nesting of distinct components, where each component typically exhibits opportunities for distributed computation. Current RL libraries offer parallelism at the level of the entire program, coupling all the components together and making existing implementations difficult to extend, combine, and reuse. We argue for building composable RL components by encapsulating parallelism and resource requirements within individual components, which can be achieved by building on top of a flexible task-based programming model. We demonstrate this principle by building Ray RLlib on top of Ray [40] and show that we can implement a wide range of state-of-the-art algorithms by composing and reusing a handful of standard components. This composability does not come at the cost of performance — in our experiments, RLlib matches or exceeds the performance of highly optimized reference implementations. Ray RLlib is available as part of Ray at https://github.com/ray-project/ray/.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A C++ template-based reinforcement learning library: fitting the code to the mathematics

This paper introduces the rllib as an original C++ template-based library oriented toward value function estimation. Generic programming is promoted here as a way of having a good fit between the mathematics of reinforcement learning and their implementation in a library. The main concepts of rllib are presented, as well as a short example.

متن کامل

Dynamic Obstacle Avoidance by Distributed Algorithm based on Reinforcement Learning (RESEARCH NOTE)

In this paper we focus on the application of reinforcement learning to obstacle avoidance in dynamic Environments in wireless sensor networks. A distributed algorithm based on reinforcement learning is developed for sensor networks to guide mobile robot through the dynamic obstacles. The sensor network models the danger of the area under coverage as obstacles, and has the property of adoption o...

متن کامل

Multicast Routing in Wireless Sensor Networks: A Distributed Reinforcement Learning Approach

Wireless Sensor Networks (WSNs) are consist of independent distributed sensors with storing, processing, sensing and communication capabilities to monitor physical or environmental conditions. There are number of challenges in WSNs because of limitation of battery power, communications, computation and storage space. In the recent years, computational intelligence approaches such as evolutionar...

متن کامل

Reinforcement Learning in Neural Networks: A Survey

In recent years, researches on reinforcement learning (RL) have focused on bridging the gap between adaptive optimal control and bio-inspired learning techniques. Neural network reinforcement learning (NNRL) is among the most popular algorithms in the RL framework. The advantage of using neural networks enables the RL to search for optimal policies more efficiently in several real-life applicat...

متن کامل

Reinforcement Learning in Neural Networks: A Survey

In recent years, researches on reinforcement learning (RL) have focused on bridging the gap between adaptive optimal control and bio-inspired learning techniques. Neural network reinforcement learning (NNRL) is among the most popular algorithms in the RL framework. The advantage of using neural networks enables the RL to search for optimal policies more efficiently in several real-life applicat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017